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Th Effects f. Feedback and Predictability n J m

Betty S. Goldsberry

Abstract

Previous research has found that when subjects are

given cognitive feedback, they reach higher levels of

achievement than when they are given outcome feedback. It

was hypothesized that this finding was due in part to the

predictability of the task environment since outcome

feedback is at. a distinct disadvantage as a sole means

of conveying such information. A study was conducted to

compare response and outcome feedback under three

predictability conditions. The design included a control-

group receiving no feedback at all, two response groups

differing in precision of feedback information, and two

outcome feedback qroqps differing on a quantity dimension..,.

Task predictability conditions averaged across five learning\

blocks were high (L - .94)p moderate (C = .87) and low

low CL = .71}).The study also attempted to clarify the

definition of feedback and to equate the availability of task

information in the various feedback conditions that were

compared. /

Contrary to expectations, the utility of outcome

feedback was inferior to that of response feedback under all---"

I



"-\three predictability conditions tested. In fact, an

interaction revealed that the effect of increased

predictability raised rather than lowered the disparity

between outcome and response feedback performance. The

results also revealed that a control group receiving no

feedback at all performed as well as or Letter than

those with feedback when the availability of task

information was equated. Moreover, eliminating the

memory requirement inherent in the use of outcome feedback

only worsened performance. Similarly, adding precision to

the response feedback condition beyond the level of mere

directional error information did not improve performance.

The principal conclusions to be drawn from these

findings are: (a) increasing predictability improves

judgment performance but does not enhance the effectiveness

of outcome feedback, (b) providing outcome feedback is

actually detrimental to performance when the subject is

adequately instructed regarding the underlying task .

structure, and (c) increasing the precision of response

feedback beyond mere direction of error is of no apparent

value in multiple-cue judgment tasks.

Io-
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Introduction

It is now well established that human judgment

capabilities are limited, and that decisions based largely

on intuition can be seriously biased or flawed (Nisbett &

Ross, 1980). Further. people are poor at recognizing the

deficiencies in their own performance, and as a result,

tend to be over confident (Einhorn-& Hogarth, 1981; Slovic

et al., 1977). Attempts to improve both performance and

awareness through the use of systematic training procedures

have met with only limited success (Slovic, 1982).

Naturally, a central feature in most such Idebiasingm

paradigms is a provision of feedback. Since knowledge of

results (or feedback) has long been considered a

sufficient--if not necessary--condition for learning

(Holding, 1959), the question of why it is not more

generally effective in moderating judgment and decision

behavior has been of interest for some time (Fischhoff,

1975). Among the conclusions that have emerged are (a) the

recognition that in many common judgment situations,

feedback is insufficient, irrelevant, or even misleading

(Einhorn, 1980) and (b) the observation that only certain

types of feedback are useful when the relationships to be

learned are probabilistic rather than deterministic (as is

usually the case in judgment and decision tasks). More

specifically, it has been suggested that the mere knowledge
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of the outcs produced by a Judgment or decision process

(i.e. their accuracy, level of success, payoff, etc.) is

relatively useless or even counterproductive, whereas

information regarding the px•aea itself (i.e. the task

structure, the ideal response strategy, or both) can produce

improvement (Deane et al., 1972; Hammond & Summers, 1965;

Hoffman et al., 1981; Summers & Hammond, 196G).

Although considerable evidence has been gathered in

support of the above generaliiations, the issue of how to

structure feedback for perposes of improving and/or

sustainiing judgment performance is far from resolved. For

one-thing, the gutc2-.2LQsa distinction is but one of

many that have been applied to the feedback concept:

feedback can be manipulated in a host of ways, all of which

coold have implications for judgment performance. For

another, it has recently baen pointed out that task

characteristics in addition to the feedback

itself--independently and in conjunction with feedback--caui

influence the efficacy of any parti~ular kind of feedback.

Adelman (1981), for example, has shown that =zk con=.ee,

or the degree of correspondence between implied and actual

properties of the task environment determine the relative

effectivaness of outcome and process (or cognitive)

feedback: outcome feedback is not only useful, but as

effective as cognitve feedback when incorporated into a

highly congruent task. At the risk of oversimplification,
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what this means is that a decision maker (DM) can benefit

from outcome feedback if he/she has a good conception of the

processes by which outcomes are produced; otherwise, such

information only leads to confusion. Cognitive feedback, on

the other hand, is useful for acquirin' that understanding,

but redundant once the basic structure is learned. Thus in

a congruent task (where DM is already familiar with the

basic processes), outcome feedback serves as well as

cognitive feedback in maintaining performance.

The present study was designed to explore further the

rela'-.ve efficacy of outcome feedback in judgment as a

function of tazk conditions. In this case, however, every

effort was made at the outset to insure that DM was aware of

the process or rule by which outcomes (criterion values) were

related to the predictive information (cue values). Such

conditions would be present in any real-world judgmant task

where cue-criterion relations were known. The task property

of interest here was tas 2rditaiiJUit or the extent to

which the Oprocessw relating cues to outcomes was reliable.

The main isjue was whether feedback type would interact with

this task feature in a manner similar to that found by

Adelman (1981) for congruence. That is, does the

effectiveness of outcome (versus cognitive) feedback

increase with task predictability as it does when the task

becomes more congruent? In a sense, both manipulations

could be viewed as ways of making the judgment task easier.
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Although several investigations have speculated upon a

predictability-feedback interaction (Adelman, 1981; Payne,

1982), none has yet demonstrated it.

Thus the principal hypcthesis addressed in the present

study was that outcome feedback should become more effective

relative to cognitive feedback in shaping and sustaining

judgment performance as task predictability increases.

Since all subjects were familiar with the task structure

(hence "congruence" was fixed at a high level), the

cognitive feedback dealt primarily with the appropriate

rehp2na strategy. That is, DM presumably knew what the

cue-criterion relationships were, and thus his/her only

concern was how to produce responses in a manner consistent

with this structure. The feedback indicated the degree of

correspondence between the response strategy evidenced in

DM's judgment behavior and the optimal strategy (therefore

the cognitive feedback conditions are referred to as

respon/e feedback in the remainder of this report).

The task, analytic approach, and interpretations

involved in this study, like those of its predecessors, all

draw heavily upon the so-called Brunswik Lens Model of

judgment (Brunswik, 1952, 1955). Therefore, a brief review

of this model is in order.

In essence, the "lens model" (illustrated in Figure 1)

separates characteristics of the environment from

characteristics of the human judge. The left portion of
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Figure 1 represents the environment and illustrates the

Otruee relationship between the predictive cues and

criteria, whereas the right portion represents the judge and

illustrates cue-criterion judgment relationships. The left

portion, therefore, permits a normative analysis of judgment

while the right portion permits a descriptive analysis.

Tucker (1964) suggested that the relationship

between the judgments and the criteria could be

partitioned into several statistically independent

components reflecting: (a) the judge's acquired knowledge

of task properties, (b) his/her cognitive control in

applying that knowledge, (c) the degree of predictability in

the task environment, and Md) the nonlinearity in the

judgments. The equation reads as follows:

Ra G R3 Re+ C [1 Is e7i7 (1)

where
Ra the relationship (correlation) between the

judgments and the criterial

G -the correlation between the linear predictions

of the judgments and the linear predictions of the

criteria;

R the correlation between the judgments and the

linear predictions of the judgments;

Re - the correlation between the criteria and the

/

!~
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ENVIRONMENT JUDGE

(Ra1a)

Achievement

*Criterion Cues Judgment

Predict- X3 . Cognitive
ability (Re Control (R

Criteor on xi ~ JudgmentPrediction Prediction

Knowledge

(G)

Figure 1: Prunsvik's Lens Model
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linear predictions of the criteria, a measure which places

an upper limit on achievements

C -the correlation between the variance in the

task system and the variance in the response system, a

measure which is an indication of nonlinearity in the

judge's response strategy.

Hammond and Summers (1972) used the lens model to

isolate two of these components-the acquisition of

knowledge (G) and the application of knowledge (Rd).

They defined acquisition as the extent to which the

judge's cognitive system is isomorphic with (in the same

form as) the task environment. They defined application,

or cognitive control, as the extent to which acquired

knowledge is utilized consistently in making judgments.

The isolation of these two factors made possible an

assessment of how feedback type and other task

characteristics affect performance through use of multiple

regression analysis.

In this application, regression is used to model the

way in which information about the cues is ised or should be

used to produce a judgment. It accomplishes this by

generating, from an intercorrelation matrix, of cue

dimensions, a linear regression equation that indicates how

best to weight each cue dimension. If the cue values are

regressed on the "correct" judgments (criteria), the linear

model illustrates an optimal weighting strategy (a normativn



modeilof judgment); and if they are regressed on the

*observed' judgments, the model illustrates a response

weighting strategy (a descriptive model of judgment or the

judge's OpolicyO). If, for example, the weight of a cue

dimension was 1.0, it would indicate that the judge has

relied completely on that dimension in making his judgments,

whereas a zero weight would indicate that he has ignored the

dimension completely.

The present research, then, used the lens model and

multiple regression analysis to create a theoretical

framework for the investigation of the effects!of feedback

type and task characteristics on human judgment. Since the

requisite knowledge (i.e. proper cue-weighting~strategy or G)

was furnished directly through instructions, any effects of

the manipulations were expected to appear in terms of the

application of knowledge (i.e. cognitive control or Rs)

and the overall achievement index (i.e. Ra)

a \
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Method

Subjects and Design

Seventy undergraduate psychology students

participated in the research project as judges (subjects)

in exchange for extra course credit or $12.00 in cash.

Subjects were randomly assigned to five treatment groups

defined on the basis of feedback type. They made judgments

on three different hypothetical jobs, each representing a

different level of predictability. The distinction between

these five feedback groups and three jobs is explained in

greater detail in the next section.

To control for possible order effects, presentation

of the three jobs was counterbalanced; to minimize

fatigue effects, each job was presented at a different

session. Each session was divided into a warm-up period
a

and five practice blocks. The experimental design,

------. -therefore, was a mixed model 5 (feedback type) by 3 (task

predictability) by 5 (practice block) factorial with 14

subjects per group.

"T•.k

The judgment task was choseL on the basis of its

common usage in human judgment research and the likelihood ',

that it would be meaningful for a wide variety of

potential subjects. It consisted of evaluating the overall

/1
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suitability of hypothetical job applicants based upon their

ratings on three skill dimensions (i.e. the cue values).

Using the weighting strategy shown in Table 1, subject were

required to integrate the three cue values for each of 320

applicants into a single suitability rating on a scale of 1

(least suitable) to 9 (most suitable). Since this weighting

TABLE 1

Optimal Weighting Strategy

Skill Rating

1 2 3

Regression Weight .50 30.20

strategy was, by definition, the normatively optimal model

of the task environment (left portion of the lens model),

it was used to generate the criteria and the criterion

predictions characterizing the task. Random error was then

added to the criteria to produce the three levels of

predictability (one for each job): (a) high, in which

-.94P Mb moderate, in which L. - .87# and (c) low, in

which L - .71. Therefore, three different sets of criteria

were generated and only one set of predictions. In the

low predictability condition# 50 percent of the variance
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was due to random error; in the moderate and high

predictability conditions, the corresponding error

variances were 24 and 12 percent, respectively. These

three sets of criteria were used as the basis for generating

feedback in all four of the feedback groups.

Each applicant profile (illustrated in Figure 2)

contained three skill ratings and a set of irrelevant

biographical information. It was presented via a Visual

200 terminal controlled by an Advanced Systems/9000

computer. The skill ratings were generated orthogonally

from a normal distribution of numbers ranging from 1 to 9

with a mean of 5 and a variance of 2. Biographical data

were randomly selected from the Houston, Texas telephone

directory.

The five types of feedback were: (a) no feedback

(control), (b) non-historical outcome feedback,

(c) historical outcome feedback, (d) comparative response

feedback, and (e) exact response feedbaCk. In the control

condition (a), the subject was forced to rely entirely upon

the strategic information provided by the instructions (see

Table 1): there was no opportunity for judgment-to-judgment

calibration as in the four feedback conditions. The two

outcome feedback conditions (b and c) afforded the subject

knowledge of the "correct" response as generated by the

environmental model (including the random error component).

They differed in that non-historical feedback (b) indicated

"" i i I.
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Name: Mary Frances Smith

522 Pontiac Avenue ",

Houston, Texas 77024

Telephone No. 567-3443

Rating Skill No. Rating

1 7

2 2

3 5

Your response is __o_...

Figure 2: Profile format.
N

4

- I -

7,!
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the correct response for the current applicant only, whereas 'N

historical feedback (c) displayed the results for the past

20 applicants as shown in Figure 3. This manipulation was

designed to control for the role of memory in any obtained

outcome-cognitive feedback difference. That is, if the

typical inferiority of outcome feedback is due to the

subject's inability to remember how previous responses-

turned out, as some have suggested, then historical outcome

feedback should ameliorate the deficiency.

Finally, the two cognitive (response) feedback

conditions (d and e) provided the subject with information

on how his cue-weighting policy over the last 20

judgments (right-hand side of the lens model) compared to

optimal (left-hand side of the lens model). It was obtained

by regressing the actual judgments onto the cue values

(ratings) and displaying the resulting beta weights either

numerically in comparison to the optimal ones (e above as

illustrated in Figure 4), or in comparative terms (d above

as illustrated in Figure 5). In the latter case, the

"tolerance interval* for a correct response (OOKO feedback)

was a captured weight set to within ±.05 units of the

optimal weight for a particular cue.

Mggdure

All subjects participated in three sessions, each

approximately 60 minutes in length and scheduled one week
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First Second Third Your Correct

Skill Skill Skill Response Response

5 2 7 4 4

3 1 8 7 3

7 3 2 5 5

16 4 4 3

Figure 3: Sistorical outcome feedback display.

I>

/ /

-.- ,. . . . . . . . . . . . . . . ..,
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Ratinq Skill Optimal Weighting Your Weighting

1 .0 .67

2 .30 .27

3 .06

Figure 4: Exact ce~ponae feedbLck display.

Rating Skill OtmlWeighting Your Weighting

1 .50 Too high

2 .30 OK

3 .20 Too Low

Figure 5: Comparative response feedback display.

/\
-
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apart. At the beginning of each session, written

instructions were given describing the job, the assessment

procedure, the feedback type, and the optimal weighting

strategy. To insure full understanding of this

information, instructions were augmented by a graphical

illustration of how each skill dimension correlate6 with

on-the-job performance. The subjects were also taught how

to use the Visual 200 terminal Lo enter their judgments.

Subjects were told that each session would be

devoted to making suitability ratings on applicants for

three different jobs. The normality and dependence

features of the profiles were also explained so the

subjects would not be misled searching for nonexistent

profile structures. The actual .3b titles and skill

dimensions, however, were not identified so that subjects

would not be influenced by prior knowledge or familiarity

with the jobs. I

All subjects were paced through 20 warm-up profiles

followed by 300 experimental ones with the aid of a tape

recording of "beeps" presented at 10-second intervals.

Between each set of 20 profiles (a unit) there was a

60-second pause during which the control and non-historical

groups rested and the other three groups received their

end-of-unit feedback.

V•~e
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The scaled judgments served as the basis-for two sets

of derived measures: two product measures (hit-rate and

achievement) and two process measures (knowledge and

cognitive cortrol). The product measures indicated how

closely judgment performance approximated the defined

optimal while the process measures examined the inferred

cognitive elements underlying that performance.

The model adopted for this purpose was the standard

linear regression approach commonly used in human judgment

research and explained in the Introduction. The optimal

weights assigned to the various skill dimensions are shown

in Table 1. Hit-raat was simply the proportion of a

subject's judgments that matche- the ovtput of the "true* or

ecologically valid weighting model. ha.vamennt was the

correlation between the subject's judgments and the

optimal model's "judgments." Knowlsg•e, or the subject's

.';trstanding of the optimal weighting strategy, was

inoexed by the correlation between the criteria produced

by the optimal weighting strategy and judgments produced

by a model of the subject's weighting strategy. The

latter, of course, was derived from the subject's actual

judgments through the use of multiple regression analysis

to *capture" his policy. on=t12o was indexed by the

correlation between judgments predicted on the basis of

the subject's captured policy and ones he or she actually

produced.

k. j,
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The mathematical relationship between achievement and

the process measures (knowledge and contro~l) was discussed

in the Introduction. For pr,.isent purposes, this

relationship, which is. a mathematical statement of the lens

model as set forth in equation 1, is simplified as follows:

R a G Rs Re (2)

because specification of an optimal weighting strategy

makes the criterion as predictable as R e, and the optimal

strategy is linear (eliminating the need for the right-most

term in equation 1). The simplified equatkion renders the

distinction amiong measures used in the present research

apparent. The R a term represents achievement which can be

partitioned into knowledge (G)? control (R 5), and

predictability (R e). Judgments are, therefore, accurate

(Ra.) to the extent that they correspond with the a-tual

suitability of the applicants as reflected by the

substantive properties of the task. It follows, therefore,

that a subject can be accurate in his Judgments to the

extent that he has a predictable task structure (R e)r he

understands the structure (G) and he is capable of using

that understanding consistently (R S).

Product and process measures were determined in
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keeping with the definitions just presented. Since task

predictability I.s a component of performance as well as an

independent variable in this research, absolute and relative

measures of performance were calculated and analyzed. The

absolute performance measures were the observed block scores

while the relative performance measures were calculated by

dividing each observed block score by the optimal block

score (obtained by applying the optimal weighting strategy

to the cue values). Naturally, the optimal block scort

declined as predictability was reduced. It also varicd

somewhat across learning blocks since predictability was not

counterbalanced over blocka in this study. Tables 2 and 3

show the optimal block scores used to calculate the relative

achievement and hit-rate measures, respectively.

Separate analysis of variance procedures were

performed on AbguZe and relative measures in order to

assess the significance of main effects and interactions

among the independent variables. Dunnett tests, which

compare treatment means to a control groups, ere also used

to compare the effects of each feedback type with the no

feedback control. In addition, Newman-Keuls bests of

paired comparisons were carried out, when app opriate, to

isolate the pattern of significant effects. rhese tests

were perforned in a manner described by Winer Q1962).

.. , . .. / \~--- -.
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Table 2

Optimal Achievement Scores.

Total Job Task Predictability C1)

High Moderate Low Mean

Blocks

1 .83 .87 .72 .81

2 .95 .91 .80 .87

3 .97 .87 .61 .82

4 .98 .92 .78 .90

5 .96 .86 .64 .82

Mean .94 .87 .71 .84

/"

* j, ,.* ' ~.< .-. ,"*7 . '. ",." '
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Table 3

Optimal Hit-rate Scores

Task Predictability Levels (I correct)

High Moderate Low Mean

Blocks

1 100 63 32 65

2 100 62 40 67

3 100 s0 32 60

4 100 63 45 78

5 100 65 50 72

Mean 100 60 40 67
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Results and Discussion

For purposes of clarity in exposition, the principal

findings are organized around four major questions addressed

by this research: (a) Does task predictability influence

performance? (b) Does feedback type influence performance?

(c) Does practice influence performance? and (d) Does

feedback efficacy differ ab a function of task

predictability? The data bearing on each of these questions

will be preceded by a brief discussion of the expected

results and their relevance to human judgment. Findings will

be based on analyses of variance performed on the absolute
hit-rate (Ha)t relative hit-rate (Hr), absolute

achievement (Ra), relative achievement (Rr), knowledge

(G), and control (R.) measures of performance which were

described in detail earlier.-

Feedback types will be represented by the following

abbreviations: (a) T, for the control group which.was given

only task information, (b) N, for the non-historical outcome

group, (c) H, for the historical outcome group, (d) C, for

the comparative response group, and (e) E, for the exact

response group.

1. Does task predictability influence performance?

Task predictability can have two different types of

influence on performance. First, as an independent variable

--

- I I,,
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and means of manipulating a substantive property of the

judgment task, predictability can alter the performance of

the optimal weighting strategy. A reduction in

predictability, therefore, should produce a performance

decrement even if the subject makes accurate and consistent

usage of the available task information. Second#

predictability can have an effect on the way in which

subjects process the information presented to them~. This,

of course, is the more interesting influence from a

psychological standpoint. By contrast, the first influence

is important in that it serves as an indication of the

subject's sensitivity to the manipulation-in essence a

method check.

As noted in the Method section, two different kinds

of performance measures (absolute and relative) were used to

explore the effects of predictability on judgment, The

influence of predictability as a manipulator of the task

conitent was investigated by analyzing the absolute hit-rate

and achievement measures. A significant effect for these

measures would suggest that subjects were trying to use the

optimal weighting strategy to make their judgments or at

least that they were sensitive to the manipulation. The

influence of task predictability asa a cognitive component

of performance was investigated by analyzing the relative

performance measures since they reflect performance after

manipulation effects have been removed. Significant
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effects for both absolute and relative measures were

anticipated.

In general, the predictability manipulation had the

desired effect on performance, for as predictability

increased, so did performance. Although this finding comes

as no surprise, it is nonetheless important because it

suggests that subjects were sensitive to this task property

and were trying to maximize their performance. As

illustrated in Figure 6, both absolute product measures of

performance yielded significant effects for task

predictability, & (2, 130) - 672.15, 9 < .01 for

achievement, and E (2, 130) * 377.70, .< .01 for

hit-rate..

Predictability was also found to have a significant

effect on relative performance. The two relative indices

did not agree, however, on the nature of this effect.

Figure 7 indicates that relative achievement increased with

an increase in predictability, E (2, 130) 8.01,.

i < .01, and\ that relative hit-rate decreased with an

increaase in ;redictability, E (2, 130) - 45.63, 1 < .01.

The ambiguity suggested by the relative measures

could be an a tifact of the way accuracy was defined for

hit-rate: on y an exact match between the subject's

judgment and •he value produced by the optimal weighting

model was considered a *hit.* Consider the optimal

hit-rate values shown in Table 3. Under high
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predictability, the model was 100 percent correct by

definition. Since even a w Il-calibrated subject would

have trouble approximating this level, given that a

judgment had to be perfect to be considered correct, one

would expect relative hit-rate to be rather low. Under low

predictability, on the other hand, the model was correct

only about 40 percent of the time, a considerably easier

standard against which to express the subject's

performance. Even random responding would have yielded a

relative hit-rate of nearly 25 percent under this condition " '

(compared to about 11 percent under high predictability).

Had a more lenient criterion been set for the definition of

a "hit,# such as a one-unit confidence interval around the

model's judgments, relative hit-rate might have produced a 2

trend more similar to that of relative achievement. N!

The process measures, knowledge and control, provide

insight into the manner by which cognitive aspects of

judgment affect performance. As illustrated in Table 4,

they reveal that when predictability is increased from

the low to the moderate level, both the understanding and

the application of task structure information increases; . \j

but when it is increased further to the high predictability

level, no additional improvement in cognitive processing

occurs. Although small in absolute terms, the difference
5'

between low and moderate predictability yielded a

significant effect of task predictability for both
S. .. 5
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TABLE 4%

Mean Process IMeasures under

Three Predictabilit:-" Conditions

Measures CL)

Knowledge Control

Predictability Level

Low .88 .86

Moderate .89 .87

High .89 .87

Mean .89 .87

1 
Ir

• F

/4",

.9' .O)
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knowledge, # (2, 130) - 4.92, 2 < .01, and control,

S(2, 130) - 3.70, 2 < .03. Hence, an increase in task

predictability can significantly improve these two aspects

of cognition; but if they are already at a limit dictated

perhaps by mental capability or capacity, no further

improvement will occur.

Task predictability, therefore, had a significant, though

very small, effect on judgmental knowledge and control. As

predictability increased, so did these aspects of judgment,

although perhaps limited by a "ceiling" associated with the

particular properties of the task.

2. Does feedback type affect performance?

The present study was designed to control for the

typical confounding of task knowledge and feedback type. In

previous studies, only subjects receiving cognitive feedback

had access to specific (and important) knowledge of the

formal task structure. By providing such information to all

feedback groups via instructions, the present design j
permitted a fair comparison of response and outcome feedback

conditions. The comparison of each feedback type with a

control group receiving no feedback (task information only), -N'
therefore, isolated its utility in judgment. In light of

recent findings, all feedback types tested were expected to

provide some benefit, at least under some conditions, with

response feedback generally being more beneficial than

'4
-4-- , ,* -

t -> i .. .
• "•' '"' ' "\ 7 - ' /-"" . . .. -
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outcome feedback.

The results revealed that the type of feedback

presented had a significant overall effect on performance

for both absolute indices, Z (4, 65) = 7.82, p- < .01 for

achievement and Z. (4, 65) = 4.21, P_ < .01 for hit-rate.

However, contrary to expectations, Table 5 illustrates that

the two response feedback groups performed at about the same

level as the control group, but all three were better than

the two outcome feedback groups. This relationship was

supported by the results of Dunnett tests which revealed

that for absolute measures, performance under exact and

comparative conditions (response feedback) was not

significantly different from the control (2 > .05); but

historical and non-historical conditions (outcome

feedback) were significantly inferior to the control

(p < .05). The results of Dunnett tests also revealed that

for relative indices, only historical group performance was

significantly inferior to the control (p- < .05). These

findings generally challenge the utility of all four

types of-feedback tested when subjects are informed of the

proper weighting strategy prior to their judgments. It

does, however, corroborate the evid ence that outcome

feedba ck is detrimental to judgment performance.

It is apparent from the relative performance measures

that when the effect of predictability as an aspect of task

content is removed, the relationships between feedback
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Table 5

Mean Product Measures under

Five Feedback Conditions

Measures

Absolute Relative (ratios)

a(S) Ra) H_. Rr

Feedback Types

No feedback

Control 50 .76 .77 .90

Outcome feedback

Non-historical 43 .71 .69 .84

Historical 40 .67 .66 .79

Response feedback

Comparative 47 .75 .69 .88

Exact 50 .75 .75 .88

.Mean 47 .73 .71 .86
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types is unchanged. Significant feedback type effects

appeared for both relative achievement, X (4, 65) - 7.51,

l < .01), and relative hit-rate measures, E (4, 65) - 2.86,

S< .03.

A comparison of the two types of outcome feedbacka'"

suggests that preserving historical outcome data (cues,

judgments, and criteria for the past 20 profiles) hurts

,ather than helps the decisiun maker. This finding was

supported by a Newman-Keuls test that revealed a significant

dIfference in absolute achievement between the two outcome

feedback groups (1 < .05). Relative achievement was also

lower when a history was available, but the difference was

not significant. It will be recalled that this manipulation )

was introduced in order to determine whether deficiencies of

memory could explain the previously reported inferiority of

outcome feedback. If the decline was due to failure of

memory, performancc should have been better with the

histozical record. Since the trend was in the opposite

direction, failure of memory would not seem a reasonable

explanation.

The detrimental effect of historical outcome feedback

can, however, be explained with reference to the process

measures. Inspection of the knowledge and control measures

in Table 6 reveals that the subjects receiving a history of

their judgments exhibited less control over their response

strategies than did those without such a history. A

,.÷

I.- .-
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Table 6

Mean Process Measures under

Five Feedback Conditions

Measures (1)

Knowledge Control

Feedback Type

No feedback

Controi .90 .92

Outcome feedback

Non-historical .87 .86

Historical .87 .80

Response feedback

Comparative .89 .88

Exact .90 .89

Mean .89 .87

'.\ .j.
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Newman-keuls test supported this conclusion, the mean

difference of .06 between these two outcome feedback

conditions being highly significant (2 < .01) for the

control index. By contrast, the results for the knowledge

index were identical whether or not history was displayed.

Thus the decline in performance is clearly attributable to

the effect that historical information has on the subject's

ability to apply his or her own policy consistently.

Turning to the more constructive feedback types, it

appears that feedback with the precision of regression

weights leads to no better performance than comparative

information based on those regression weights. This is

supported by the fact that a Newman-Keuls test yielded no

significant difference (2 > .05) for •he two response

groups on any of the measures analyzed. Regression weights,

therefore, are probably simplified to some extent during

cognitive processing. This research does not permit

speculation on the degree of simplification that takes place

but it does suggest that regression weights are no more
/

useful than comparative information derived from them, at

least under the conditions studied here.

In summary, feedback was found not to have the

expected positive effect on performance. Response feedback

yielded performance similar to no feedback at all, while

outcome feedback yielded considerably poorer performance.

A principal consequence of outcome feedback was its

K
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detrimental effect on-cognitive control,, a detriment which

was exacerbated by the addition of historical information

(i.e. prior outcomre data).

3. Does practice influence performance?

Learning a cognitive skill such as the one used in

this research has been conceptualized as a three stage

mental process (Fitts# 1964). The first stage involves an

initial encoding of the skill into a form sufficient to

generate the desired behavior to some crude extent (i.e.

rule learning). This stage is characterized by rapid

learning and sometimes verbal mediation or rehearsal whiile

the task is being attempted. The second or "associative"

stage involves the *smoothing outu or perfecting of the

skill performance. This stage is characterized by a slowing

down of learning while gradually detecting and eliminating

errors in the initial understanding of the skill.

Concomitantly, there is a dropout of verbal rehearsal. The

third or "autonomous" stage involves even slower but

continued improvement in performance over a long period of

time.

When the subjects in this experiment were presented

with an optimal weighting strategy and given an oppirtunity

to practice using it prior to the experimental trials,

the intent was to focus on the latter of these

stages-eliminating for the most part the early

- A

- / V
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rule-learning stage which has been the emphasis in most

probability-learning research. Therefore, results were

expected to reveal a gradual but. consistent improvement in

performance across blocks, or at the very least sustained

application of the rules learned at the outset. The

A justification for this orientation was the practical

consideration that in most real-world decision systems, DM

would be appraised of any known cue-criterion relations.

No attempt was made to counterbalance predictability

over blocks and, as a result, there was a degree of

confounding between these variables, as illustrated in

Table 2 (maximum achievement possible). However, average

predictability was approximately equal for the three most

widely spaced blocks (L- .81, .82, and .82 for blocks 1,

3, and 5, respectively). Consequently, analysis of

practice effects was limited to these three blocks in order

to control predictability.-

Looking first at the achievement index (Figure 8), the

results show the anticipated gradual improvement in only

three of the five feedback groups: control, non-historical

outcome, and comparative response conditions. The historical

outcome and exact response groups showed an increase on

block 3 and a decrease on block 5, an effect which may have

been due to the increased mental load or stress imposed by

these feedback conditions. In any case, analysis revealed a

significant effect of practice on absolute achievement,

..- 1
,. ., .__-"__ ". " " -• ' .. "./ :
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t (2, 130) = 5.89, U < .01, but mean performance collapsed

across the five groups did not suggest a typical learning

function (.69, .71, and .70 respectively for the three

blocks). Rather, the above-mentioned distinction between

feedback type functions was supported by a significant

type by block interaction, E (8, 130) - 2.19, a < .03. The

trends for hit-rate (Figure 9) were similar in form to those

for achievement, but the feedback type by blocks interaction

did not reach significance, E (8,130) - 1.15, 1 < .34.

Turning to the component process measures (knowledge

and control), improvements occurred only in blocks 1 and 3,

and none of the interactions with feedback approached

significance. Figure 10 shows that knowledge averaged across

groups increased from G - .79 in -lock 1 to G - .92 in block

3 but declined slightly in block 5 (G - .90),

S(2, 130) - 507.32, I < .01; Figure 11 shows a less

dramatic but still significant trend for control,

P (2, 130) - 4.95, 2 < .01. The sharp increase in

knowledge between blocks 1 and 3 suggests that perhaps the

rule-learning stage was not completed in the warm-up period

as planned and that subjects were still encoding task

structure information to some extent during the early

blocks.

Taken together, these results suggest that practice

has a significant effect on performance but the nature of

the effect is specific to both the feedback type and the

/

* ,,-° /
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measure used to evaluate it. In addition, early practice

influences performance by improving the subject's
' /

understanding of task structure (knowledge) more so than his

or her application of that knowledge (control).

4. Does feedback efficacy differ as a function of

predictability?

It was hypothesized that the difference between the

effects of outcome and response feedback would diminish as

predictability was increased. Response feedback was

expected to yield high performance at all three levels of

predictabil.ity tested, while outcome feedback was expected to

do so only when predictability was high. Therefore, the

difference between outcome and response feedback performance

was expected to decline as predictability.increased,

resulting in a feedback type by predictability interaction.

Findings did not support this hypothesis even though a

feedback type by predictability interaction was obtained in

the absolute hit-rate measure, E (8, 130) - 4.40, t < .01.

Aa illustrated on Figure 12, the direction of this

interaction effect was exactly opposite that predicted (i.e.

the differences among feedback conditions increased with

predictability). A similar trend occurred for the absolute

achievement measure (Figure 13), but the effect was not

significant, E (8, 130) - 1.57, 2 < .14.

The relative measures produced somewhat less consistent

/
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findings than did the absolute measures. Relative hit-rate

(illustrated in Figure 14) showed a sharp, negative relation

between predictability .and performance, whereas acaievement

(Figure 15) showed a gradual, positive one. Whatever their

shape and direction, however, the effects of feedback

conditions on these functions were consistent with the

absolute measures. Performance was degraded by outcome

feedback and the expected interaction did not materialize.

Only that for relative hit-rate was significant,

. (8, 130) = 2.42, (2 < .02). Apparently, the decline in

relative achievement for the outcome feedback conditions

(Figure 151 was not large enough to cause a feedback by

predictability interaction, Z (8, 1"') - .58, a < .79.

Taken toqether, these results suggest that unlike task

congruence, task predictability does not increase the

comparability of cognitive (response) and outcome feedback

effects. Rather, it would appear that outcome feedback

becomes more detrimental to judgment performance as

predictability increases, and is generally inferior to no

feedback at all, regardless of whether performance is

measured in absolute or relative termS.
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Conclusions

The present study shows that feedback efficacy is

influenced by task predictability, but not in the way

suggested by Adelman's hypothesis. Merely knowing the rule

by which predictive information is related to consequent
outcomes does not insi're that DM will make good use of

feedback either for applying that rule more consistently or

for maintaining a level of performance. In fact, subjects

did show improvement over successive trial blocks (largely

as a function of improved consistency), but not because of

* the contribution of feedback: the no-feedback control

subjects did equally as well as the best feedback subjects

at all levels of predictability.

What feedback did contribute was all negative, and

that negative contribution increased as the task became more

predictable. In particular, outcome feedback hurt

performance and did so more seriously as task predictability

increased, much as if the *noise* (or unpredictable)

component were amplified by DM relative to the 'signal"

component as task conditions improved. Preserving records

of past outcomes and responses only served to worsen the

situation rather than *dampen out" the fluctuations. On the

other hand, response (cognitive) feedback produced no

decrement regardless of task predictability. Presumably,

whatever cognitive representation of the proper weighting

-- / .-. ..
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strategy was established at the outset was left undisturbed

by both metric and directional feedback. Of course, since
/

neither kind of feedback produced any differential

jimpgxement (relative to the control condition), it was

clearly not necessary for either the preservation or*

reinforcment of that cognitive representation.

There remains, then, a discrepancy between the

influence of two task properties (congruence and

predictability) on the efficacy of feedback in general and

outcome feedback in particular. Making DM's task clearer by

increasing congruence apparently promotes the usefulness of

outcome feedback; doing so by improving the

"signal-to-noise" ratio (predictability) only promotes the

harmfulness of outcome feedback. Since these

generalizations derive from separate studies, the next step

toward clarification would seem to lie in the direction of

concurrent investigation.
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NAVAIR 5313
Dr. Ross Pepper Washington, D. C. 20361
Naval Ocean Systems Center
Hawaii Laboratory Mr. Philip Andrews
P. O. Box 997 Naval Sea Systems Command
Kaliua, HI 96734 NAVSEA 61R

Washington, D. C. 20362
Dr. A. L. Slafkosky
Scientific Advisor Commander
Commandant of the Marine Corps Naval Electronics Systems.Command
Code RD-I Human Factors Engineering Branch
Washington, D. C. 20380 Code 81323

Washington, D. C. 20360

Dr. L. Chmura
Naval Research Laboratory Larry Olmstead
Code 7592 Naval Surface Weapons Center
Computer Sciences & Systems NSWC/DL
Washington, D. C. 20375 Code N-32

DaL!$ren, VA 22448
Office of the Chief of Naval

Operations (OP-U15) Mr. Milon Essoglou
Washington, D.C. 20350 Naval Facilities Engineering Command

R&D Plans and Programs

Professor Douglas E. Hunter Cole 03T
Defense Intelligence College Hc-fan Building 1I
Washington, D.C. 20374 Alexa.Adria, VA 22332

CDR C. Hutchins CPT Robert Biersner
Code 55 Naval Medical R&D Command
Naval Postgraduate School Code 44
Monterey, CA 93940 Naval Medical Center

... ........ Bethesda,_ _D 20014

Human Factors Technology Administrator Dr. Arthur Bachrach
Office of Naval Technology Behavioral Sciences Department
Code MAT 0722 Naval Medical Research lnstitute
800 N. Quincy Street Bethesda, MD 20014
Arlington, VA 22217

Dr. George Moeller
CDR Tom Jones Human Factors Engineering Branch
Naval Air Systems Command Submarine Medical Research Lab
Human Factors Programs Naval Submarine Base
NAVAIR 330J Groton, CT 06340
Washington, D. C. 20361
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Aerospace Psychology Department U. S. Naval Academy
Code L5 Annapolis, MD 21402
Naval Aerospace Medical Research Lab
Pensacola, FL 32508 Dr. W. Moroney

Human Factors Section.
Commanding Officer Systems Engineering -,-t
Naval Health Research Center Directorate
San Diego, CA 92152 U. S. Naval Air Test Center

Patuxent River, MD 20670
Dr. Jerry Tobias
Auditory Research Branch Human Factor Engineering Branch
Submarine Medical Research Lab Naval Ship Research and Dkvelopment
Naval Submarine Base Center, Annapolis Division
Groton, CT 06340 Annapolis, MD 21402

Navy Personnel Research and Dr. Harry Crisp
Development Center Code N 51

Planning & Appraisal Division Combat Systeras Department
San Diego, CA 92152 Naval Surface Weapons Center

Dahlgren, VA 22448
Dr. Robert Blanchard
Navy Ptrsonnel Research and Mr. John Quirk

Development Center Naval Coastal Systems Laboratory
Command and Support Systems Code 712
San Diego, CA 92152 Panama City, FL 32401

CDR J. Funaro
Human Factors Engineering Divisiin Department of the Army
Naval Air Development Center
Warminster, PA 18974 Dr. Edgar K. Johnson

Technical Director
Mr. Stephen Merriman U.S. Army Research Institute
Human Factors Engineering Division 5001 Eisenhower Avenue
Naval Air Development Center Alexandria, VA 22333
Warminster, PA 18974

Technical Director
Mr. Jeffrey Grossman U.S. Army Human Engineering Labs
Human Factors Branch Aberdeen Proving Ground, MD 21005
Code 3152
Naval Weapons Center
China Lake, CA 93555 Director, Organizations and

Systems Research Laboratory
Human Factors Engineering Branch U. S. Army Research Institute
Code 4023 5001 Eisenhower Avenue
Pacific Missile Test Center Alexandria, VA 22333
Point Mugu, CA 93042
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HQS, Department of the Army P. 0. Box 1085
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Canada M9V 2B3

Department of the Air Force
Dr. A. D. Baddeley

U. S. Air Force Office of Scientific Director, Applied Psychology Unit
Research Medical Research Council

Life Sciences Directorate, NL 15 Chaucer Road
Bolling Air Force Base Cambridge, C32 ZEF England
Washington. D. C. 2C332

AFHRL/LRS TDC Other Government Agencies
Attn: Susan Ewing
Wright-Patterson AFB, OH 45433 Defense Technical Information Center

Cameron Station, Bldg. 5
Chief, Systems Engineering Branch Alexandria, VA 22314 (12 copies)
Human Engineering Division
USAF AMRL/HES Dr. Clinton Kelly
Wright-Patterson AFG, OH 45433 Defense Advanced Research Projects

Agency
Dr. Earl Alluisi 1400 Wilson Blvd.
Chief Scientist Arlington, VA 22209
AFHRL/CCN
Brooks Air Force Base, TX 78235 Dr. M. D. Montemerlo

Human Factors & Simulation
Dr. R. K. Dismukes Technology, RTE-6
Associate Director for Life Sciences NASA HQS
AFOSR Washington, D.C. 20546
Bolling AFB
Washington, D.C. 20332

Other Organizations
Foreign Addresses

Ms. Denise Benel
Dr. Kenneth Gardner Essex Corporation
Applied Psychology Unit 333 N. Fairfax Street
Admiralty Marine Tech. Estib. Alexandria, VA 22314
Teddington, Middlesex TWII OLN
England Dr, Andrew P. Sage

School of Engineering and
Dr. Daniel Kahneman Applied Science
University of British Columbia University of Virginia
Department of Psychology Charlottesville, VA 22901
Vancouver, BC V6T IW5
Canada
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Dr. Robert R. Mackie Dr. Harry Snyder
Human Factors Research Division Dept of Industrial Engeering
Canyon Research Group Virginia Polytechnic Institute
5775 Dawson Avenue and State University
Goleta, CA 93017 Blacksburg, VA 24061

Dr. Amos Tversky Dr. Stanley Deutsch
Department of Psychology NAS-National Research Council (COiF) j
Stanford University 2101 Constitution Avenue, N.W.
Stanford, CA 94305 Washington, D.C. 20418

Dr. H. McI. Parsons Dr. Amos Freedy
Essex Corporation Perceptronics, Inc.
333 H. Fairfax 6271 Variel Avenue
Alexandria, VA 22314 Woodland Hills, CA 91364

Dr. Jesse Orlansky Dr. Robert Fox
Institute for Defense Analyses Department of Psychology
1801 N. Beauregard Street Vanderbilt University
Alexandria, VA 22311 Nashville, TN 37240

Dr. J. 0. Chinnis, Jr. Dr. Meredith P. Crawford
Decision Science Consortium, Inc. American Psychological Association
7700 Leesburg Pike Office of Educational Affairs
Suite 421 1200 17th Street, N.W.
Falls Church, VA 22043 Washington, D.C. 20036

Dr. T. B. Sheridan Dr. Deborah Boehm-Davis
Department of Mechanical Engineering General Electric CoApany
Massachusetts Institute of Technology Information & Data Systems
Cambridge, MA 02139 1755 Jefferson Davis Highway

Arlington, VA 22202
Dr. Paul E. Lehner
PAR Technology Corp. Dr. Howard E. Clark
P.O. Box 2005 NAS-NRC
Reston, VA 22090 Commission on Engrg. & Tech. Systems

2101 Constitution Ave., N.W.
Dr. Paul Slovic Washington, D.C. 20418
Decision Research
1201 Oak Street
Eugene, OR 97401
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Dr. Charles Gettys Dr. Sabur M. Pulat
Department of Psychology Department of Industrial Engineering /
University of Oklahoma North Carolina A&T State University
455 West Lindsey Greensboro, NC 27411
Norman, OK 73069

Dr. Lola Lopes
Dr. Kenneth Hammond Information Sciences Division
Institute of Behavioral Science Department of Psychology'
Un..versity of Colorado University of Wisconsin
Boulder, CO 80309 Madison, W1 53706

Dr. James H. Howard, Jr. National Security Agency
Department of Psychology ATTN: N-32, Marie Goldberg
Catholic University 9800 Savage Road
Washington, D. C. 20064 Ft. Meade, MD 20722

Dr. William Howell Dr. Stanley N. Roscoe
Department of Psychology New Mexico State University
Rice University Box 5095
Houston, TX 77001 Las Cruces, NM 88003

Dr. Christopher Wickens Mr. Joseph G. Wohl
Department of Psychology Aiphatech, Inc.
University .f Illinois 3 New England Executive Park
Urbana, IL 61801 Burlington, MA 01803

Mr. Edward M. Connelly DV. Marvin Cohen
Performance Measurement Decision Science Consortium, Inc.

Associates, Inc. Suite 721
410 Pine Street, S. E. 7100 Leesburg Pike
Suite 300 Falls Church, VA 22043
Vienna, VA 22180

Dr. Robert Wherry
Professor Michael Athans Analytics, Inc.
Room 35-406 2500 Maryland Road
Massachusetts Institute of Willow Grove, PA 19090

Technology
Cambridge, MA 02139 Dr. William R. Uttal

Institute for Social Research
Dr. Edward R. Jones University of Michigan
Chief, Human Factors Engineering Ann Arbor, MI 48109 .

McDonnell-Douglas Astronautics Co.
St. Louis Division Dr. William B. Rouse
Box 516 School of Industrial and Systems
St. Louis, MO 63166 Engineering

Georgia Institute of Technology
Atlanta, GA 30332
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Dr. Richard Pew
Bolt Beranek & Newman, Inc.

50 Moulton Street
Cambridge, MA 02238

Or. Hillel Einhorn
Graduate School of Business
Univeraity of Chicago
1101 E. 58th Street
Chicago, IL 60637

or. DougLas Towne
University of Southern California

Behavioral Technology Lab

3716 S. Hope Street

Los Angeles. CA 90007

Dr. David J. Getty
Bolt Beranek & Newman, Inc.
50 Moulton street
Cambridge, MA 02238

Dr. John Payne
Graduate School of Business

Administration
Duke University
Durham, NC 27706

Dr. Baruch Fischhoff
Decision Research
1201 Oak Street
Eugene, OR 97401

Dr. Alan Morse
Intelligent Software Systems Inc.

160 Old Farm Road
Amherst. MA 01002

Dr. J. Miller
Florida Institute of Oceanography
University of South Florida
St. Petersburg, FL 33701
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